King’s Tasks Simulation Game

Software Design Document

Lenell White

Date 3/10/2023

INTRODUCTION:

This Software Design Document (SDD) describes the functionality and software design of
a task management simulation game, King’s Tasks. In the game, the user is assigned the role of a
king whose job is gaining and managing his subjects. The objective is to keep the kingdom alive
as long as possible. The player’s score will be based on the number of days he can survive and the
game ends when the kingdom’s health drops to 0. Note: The term “king” will be used to refer to
the human player, and the term “subject” will be used to refer to the autonomous agents doing the
tasks.

The overall point of this project is to introduce a task management game that displays
personal knowledge of object-oriented programming. This has value because task management is
widely used in industry and can potentially help train employees to develop management skills.
This document provides a template, and guidance, for the simulation game.

This document contains two main sections:

1. Problem Description section describing the rules of the game as implemented.
2. Problem Solution section presenting a description of the King’s Tasks software.

PROBLEM DESCRIPTION:

This project implements a text-based simulation game in which the user assigns autonomous
agents, also to be known as subjects. The user is presented the values of his kingdom’s health,
kingdom population, day, tasks and resources as shown in Figure 1. Each “Day”, the King will
have to use these values to determine which tasks require the most importance.

City Health: 100/100 Population: 12 Day: 1

Available Population: 12 Resources

Press Next Day to Continue

Figure 1: King’s Tasks User Interface

The kingdom after each day consumes resources (food, water, material) at the end of each day.
The point of the task is to keep up with the consumption of materials as city health will fall if any
are at 0. Figure 2 shows the events that occur after “Next Day” is selected. The “Day Results”
interface show updated resources, city health, and population values. Within the “Day Results”,
are randomly generated text based events. These events will simulate real life events that can
happen to a civilization to either benefit it or destroy it. Some events will be user decision based

or be automatic. In Figure 2, we also see an example of a user-based decision event. After the Day
Results, the cycle continue and the user goes on to the next day.

Kingdom Health: 100/100

Day Results

Population: 12
Resources

There is a nearby (Lvl 1) village. Conqueror? Y/N

You have successfully conquered the village!
+4 population | -1 soldier | -2 Materials

Press Next Day To Continue

Figure 2: Day Results Interface

Every 5 days, there will be a new task along with a new resource. The table below shows all the

tasks and resources present in the game.

Task Resource Produced Resource Descriptions
Farm Food Feeds the total population. Used every
day.
Gather Water Feeds the total population. Used every
day
Train Soldiers Aids in defending the kingdom in text-
Influence based events.
Study Scholars Aids in defending the kingdom in text-
Knowledge based events.
Mine Coal Aids in defending the kingdom in text-
based events.
Used by population every day.
Fishing Food Feeds the total population. Used every
day.
Study Healing Medicine Used by the population every day.
Doctors Used in defending the kingdom in text-
based events.
Entertain Moral Used by the population every day.
Population Used in defending the kingdom in text-
based events

The rules of the game are provided below (Note: Specific numerical values may be adjusted for
game play once play testing begins.):

ocoukrwhE

~

10.
11.

12.

13.
14.

15.
16.

King’s Tasks objective is to keep the kingdom alive as long as possible.

The kingdom has a health of 100 out of 100.

The kingdom starts out with 10 population.

The kingdom starts out with The tasks of Farm, Gather, and Train.

The kingdom starts out with 20 food, 20 water, and 2 soldiers. (Likely to change)

During every “Day”, the King assigns subjects to tasks based on the “Available

Population”.

If any resource is at 0, the Kingdom takes (-10) damage to its health.

The number of subjects assigned to a task cannot exceed the maximum “Available

Population” value or be below 0.

Once a subject is placed in an activity, they cannot do anything else. (Likely to change)

A day shall end when the player selects “Next Day”.

After each day, the following resources shall be used up:

- Food and Water.

- Coal, Medicine and Moral (Only when a certain day is reached)

- Note: 1 subject consumes 3 food, 2 water, 2 Coal, 1 Moral. Medicine is used by +% of
the total population.

- Note: Resources can be consumed through text-based events

The following tasks shall produce:

- 1 Farm task = +2 Food

- 1 Gather = +2 Water

- 1 Train = +1 Soldiers & + 2 Influence

- 1 Study = +3 Knowledge & +1 Scholar

- 1 Mine =+3 Coal

- 1 Fishing = +3 Food

- 1 Study Healing = +2 Medicine & +1 Doctor

- 1 Entertain = +1 Population & +2 Moral

Text-based events will either be automatically applied or Yes/No questions off user input.

Text-based events will be random, but still only use up or supply resources already

available.

A new task and new resource associated with that task is added every 5 days.

Every two days a random text-based event will appear in the Day Results interface.

PROBLEM SOLUTION:

The overall flow of action and information for the game is listed below.

UML DIAGRAM

GameManager

+ kingdom: Kingdom

+ eventSystem: RandomEvent
+days: int \

+gameQver: boolean

+gameQver:Boolean

Kingdom

-population: int
-availablePopulation: int
-resources: ResourceManager]]
-tasks: TasckManager(]

-health: int

+ gameState():.void

-nextDay().void
-dayResults():void
-gameQver():void

-changeResourceValues(ResourceManager).void
-changeHealth():void

-initializeTasks():void

-initializeResources():void

-assignmentOfPopulation():void

-initializeEvent():RandomEvent ‘

RandomEvent

+dayResults: boolean

+startEvent(): void

+eventResults(): void

Extends Extends
SpecialEvent NormalEvent
+userDecision: boolean +startEvent(): void

+startEvent(): void

+userDecision(): void

TaskManager ResourceManager
-tasks|]: Tasks +resourceType[l: Resources
+population:int +outOfResources: boolean
+UpdateTasks():void +UpdateResources()

GameManager Class

This class runs the King’s Tasks Game. It keeps track of days, creates the Kingdom and
RandomEvent classes, and keeps track of the game status. Game statuses are game over, current

day, and day results. This class is responsible for the following actions:

1. Creates an instance of the Kingdom and RandomEvent class.
2. Game Status between “Next Day”, “Day Results”, and Game Over

Kingdom Class

This class initializes the game by creating an array of tasks and resources through file input. It
creates the tasks and requests input from the user until the user presses “Next Day”. This class is
responsible for the following actions:

- Read from a file using the Random Event class or children of that class.
- Create an instance of the Task Manager

- Create an instance of the Resources.

- Keep track of health and population attributes.

Task Manager Class

Creates a table and reads from the File “Tasks”.

Resources Class

Creates a table and reads from the File “Resources”.

Random Event Class

During the “Day Results” phase, this is used to initialize events that happen to the kingdom. Events
will take in player input if it is a special event.

Special Event

This class extends the Random Event Class. It will generate scenarios where the user will input
yes or no. The output will be a result of the applied event.

Normal Event

This class extends the Random Event Class. It will generate scenarios with a predetermined
outcome.

REFERENCES:

APPENDICES:

